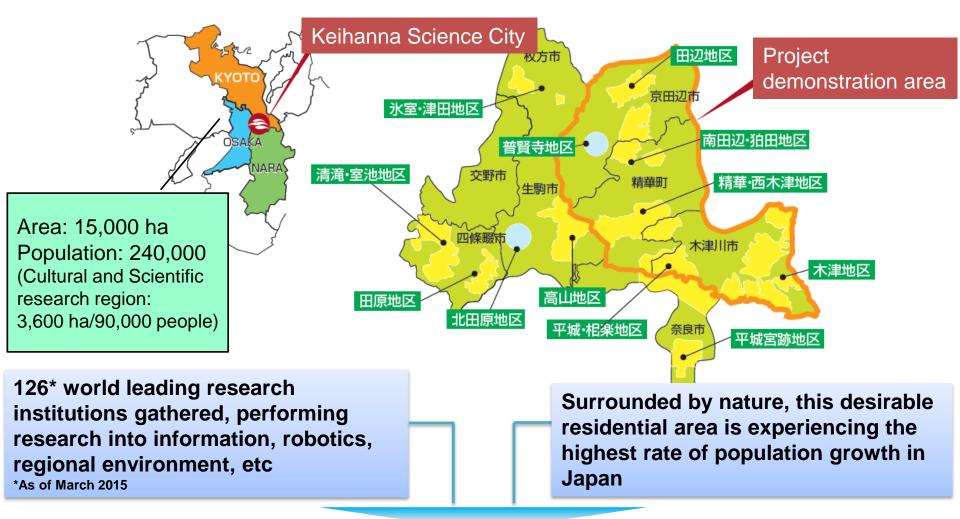
Creation of Smart Communities in Keihanna Science City - from demonstration to implementation -


Chiaki Shigematsu
Deputy Director General
Department of Policy Planning
Kyoto Prefectural Government

Main points in today's presentation

- 1 Special features and potential of Keihanna Science City
- 2 Keihanna Science City's mission and progress
- 3 Results of the demonstration project's efforts
- 4 Challenges to application into society and future developments

Special features and potential of Keihanna Science City

An international R&D hub symbolic of Japan (National project based on law)

Perfect environment to introduce trials for ground-breaking technology and new social systems, together with local residents

Keihanna Science City's mission and progress

Established as Kansai Science City through construction promotion law (June 1987~) Third Stage Plan

(March 2006~)

Built a city which focuses on culture, technology, and research

Coordination

 Develop Japanese and world cultures, etc, to help spur national economic growth

Contributing towards "Realisation of a sustainable society"

Making "Eco" the culture of Keihanna Science City!

[Main project]

Next Generation Energy and Social Systems
Demonstration Project (April 2010~)

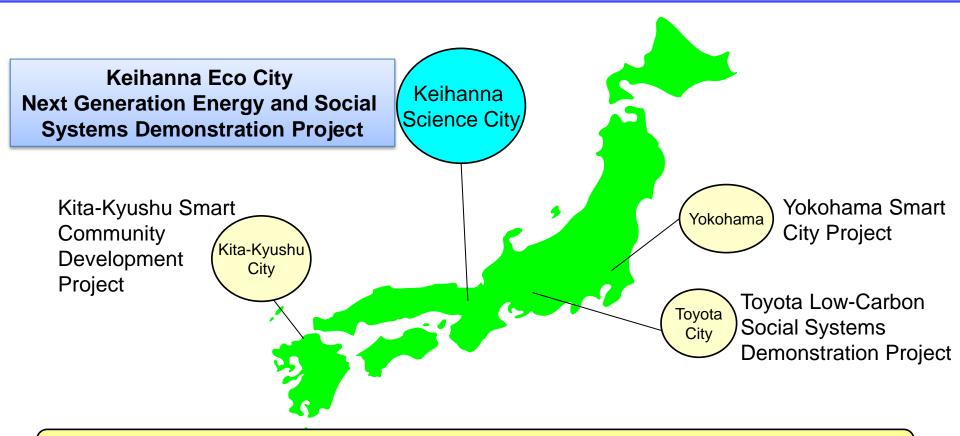
Others: low carbon challenge 25, development of micro EVs, car pool trials, development of healthcare systems, plant factories, etc

Keihanna e² Future City Promotion and Creation Plan (December 2013~)

Fusing together and combining of various lifestyle support services, such as stable energy demand and supply systems and healthcare systems

Kyoto Eco Energy Strategy (May 2015~)

O Develop a new low-energy/energy-saving society through effective utilisation of ICT and communications technology

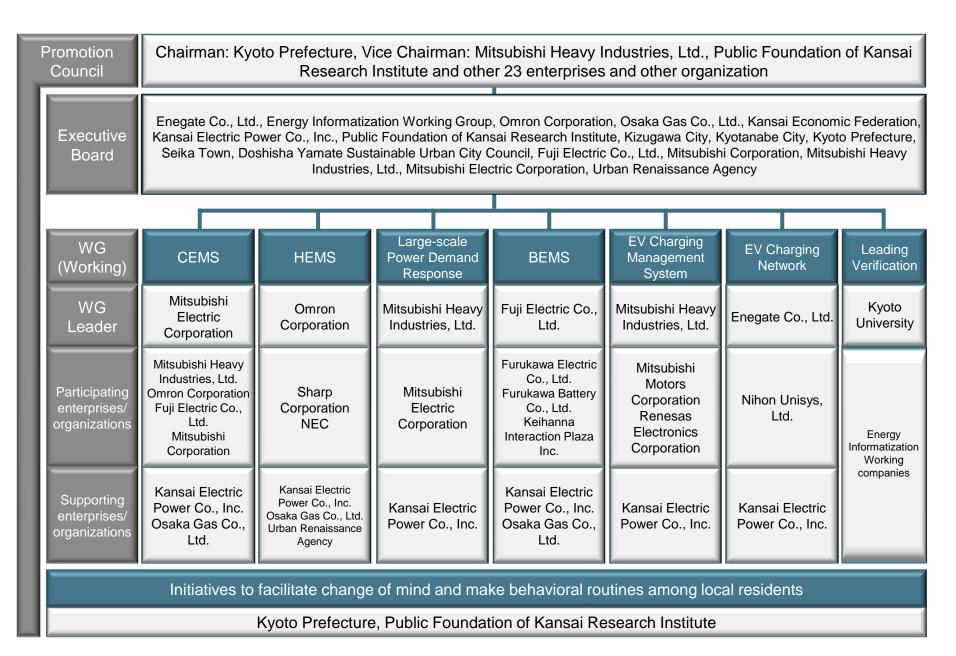

O Establish a Smart Community which makes the most of the region's unique features, etc

Create a smart, slim, and comfortable future city model

Universities, research institutions, companies, residents, local governments, all working together...

Towards a new stage of the Kansai Science City

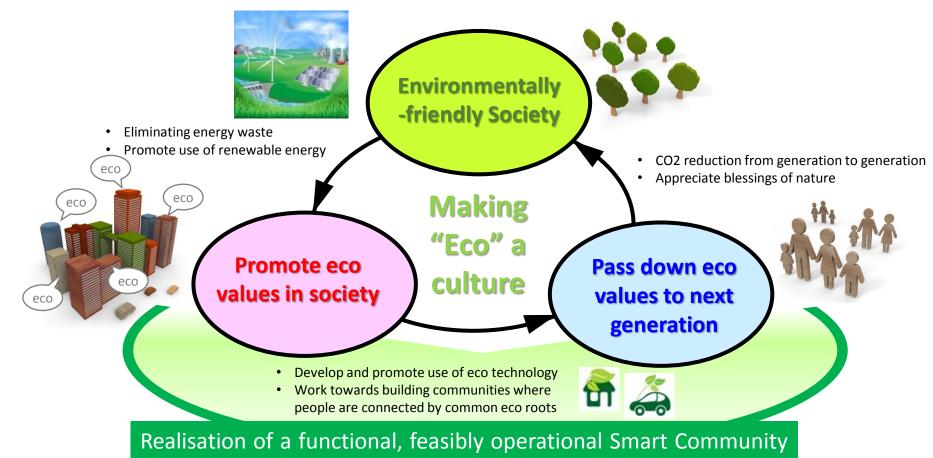
Next Generation Energy and Social Systems Demonstration Project

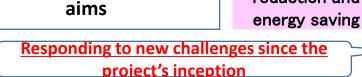


Over the 5 years from 2010 to 2014, trial projects have been underway to develop regional energy management systems which utilise each region's fundamental features and cultures

[Associated costs of the Next Generation Energy and Social Systems Demonstration Project]

- Project costs (in JPY): 2010→500million; 2011→1.5billion; 2012→900million; 2013→400million; 2014→200million
 ⇒Total approx 3.5billion
- Kyoto Prefecture has had the following budget for solar power generation, EV promotion, co-generation, and other subsidy schemes (in JPY): (2011→60million; 2012→50million; 2013→20million; 2014→20million)


Verification Project Promotion Structure

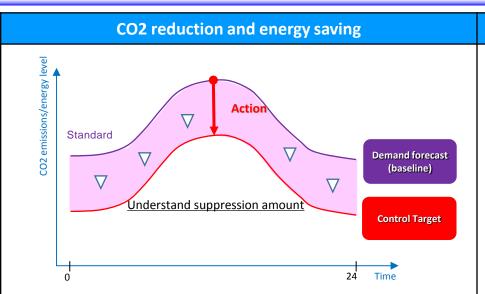


Aims of the Demonstration Project

Making "Eco" the culture of Keihanna through realisation of a Smart Community

- Begin demonstration project to aim for the establishment of a community with a next-generation cycle in place, including CO2 reductions and efficient use of renewable energy.
- Through effective use of ICT and without sacrificing Quality of Life (QOL) or convenience, establish people's "Eco Awareness and Behaviour" and develop a sustainable "Eco Cycle".
- Develop Smart Community as a feasible operational community to ensure its sustainability.

reduction and


② Peak cut (demand response) 3 Surplus
PV
acceptance
measures

Negawatt*
market
response

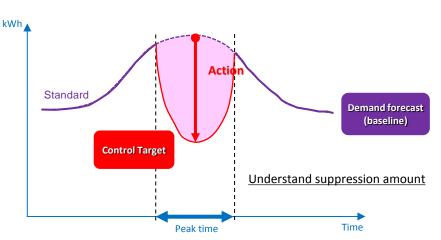
4 Energy whole sale market (balancing)

*Negawatt: amount of energy saved due to response to energy supplier's requests

(Reference) Images of the project's 4 aims

Verify the effects of the suppression amount required to decrease energy usage and CO2 emissions

±3% Understand level of achievement required to reach target Action Teach target Action Action Demand forecast (baseline)


In order to prevent blackouts from energy demand-supply imbalance, adjust for a

±3% demand-supply balance at 30minute intervals. As the grid operators incur a fee

if there is an imbalance of more than 3%, verify the effects of the suppression

amount required to achieve balancing.

Peak Cut measures

Verify the effects of the suppression amount required to reduce energy consumption during peak times in summer and winter

Surplus PV acceptance measures

Understand household energy consumption rate and charging promotion status. When the amount of solar-generated power exceeds household demand, surplus energy can be sold to the grid. In order to reduce the burden on the grid, study the effects of actions take to minimise energy sales to the grid, such as storage in batteries for later household consumption, and charging EV batteries.

Outline of each Working Group's projects to achieve the demonstration project's goals 9

Household Sector

Community EMS (CEMS)

HEMS (14 homes)

■ Measure energy consumption per appliance

EV charging management

(100 vehicles)

■ Verify effects of charging and

■ Collect and manage EV

position, battery level, and

energy suppression in

coordination with CEMS

operation data

■ Use HEMS for energy and storage battery management

Transport Sector (EV)

HEMS

EV Control Center EV Charging Station

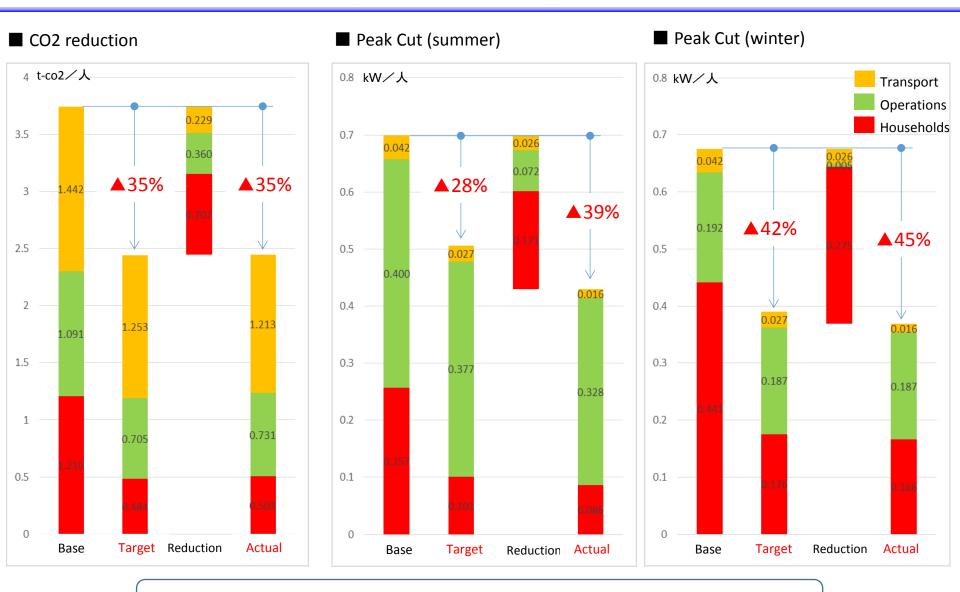
Business Sector (BEMS)

Smart meter

CEMS

- Understand status of regional energy demand and supply, including energy and gas usage statistics for households, buildings, and EVs in the region, as well as PV energy generation.
- In order to draft an optimal energy usage plan, develop each EMS and verify effects of DR and balancing measures.

Large-scale Demand Response (700 homes)

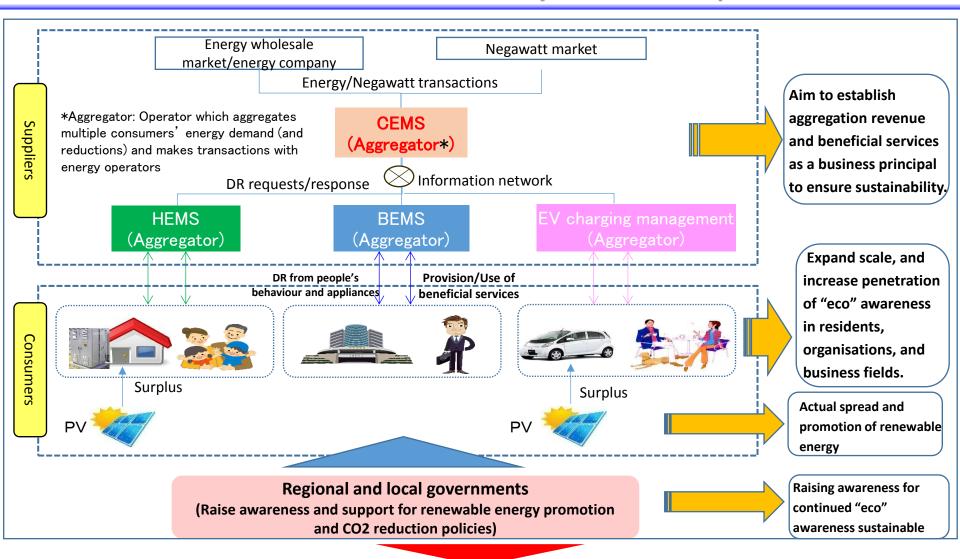

- Verify energy demand suppression effects of priceinduction DR
- Verify effects of energysaving consultations based on energy-usage data

BEMS (Keihanna Plaza)

- Reduce CO2 emissions through fuel optimisation and suppression
- DR measures for building tenants (approx. 70) and common spaces
- DR for hotel guests/rooms

Working Groups	Project Aims			
	CO2 reduction/energy saving	Peak Cut	Balancing	Surplus solar power acceptance measures
CEMS	1	O (Negawatt market)	O (Energy wholesale market)	_
EV charging management	_	0	0	0
BEMS	0	0	0	_
HEMS	0	0	0	(O)
Large-scale DR	_	O ©Keihanna Eco-City Next-Ge	neration Energy and Social Systems Den	 nonstration Project Promotion Council

Outline of quantitative target achievements

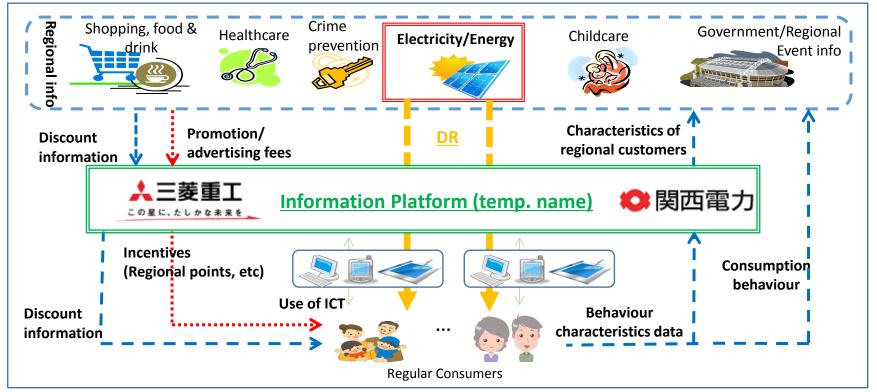

Meeting CO2 reduction and both summer/winter Peak Cut targets!

NB: Base values from fiscal 2007; targets and actual results from fiscal 2014

Points taken from the project results related to development of Smart Community

- 1. Consider <u>Demand Response (DR) is a tool to be used to bring tangible effects and lower energy costs to the regional community</u>. In order to further increase the effectiveness of DR, <u>make DR requests to consumers at 1 hour intervals</u>, and <u>also use preliminary DR</u> by fixing spot markets and other complementary policies to reduce risk of energy imbalance.
- In order to minimise the burden shouldered by residents and participants, <u>implement and install remotely-controllable</u>
 <u>household electronics and appliances on a wide-scale in homes and facilities</u> for participating regions and consumers.
- 3. Use <u>people's behaviour</u> in response to DR to work towards engraining an <u>eco awareness and way of thinking in people</u> so that they pass it on to future generations. (<u>Develop using tools closely-related to lifestyles of which people do not tire easily</u>. Also use CO2 reduction and energy saving consultations as another tool.)
- 4. In an environment which is subject to fluctuations in demand and supply due to a large introduction of solar power generation and others, in order to not sacrifice quality of life or inhibit society's actions, make use of energy storage
 batteries, including EVs, to implement a buffer of surplus energy which can also be used to deal with Peak Cut measures and demand-supply balancing. (Promote PV solar power and storage batteries as a set.)
- 5. It is also necessary to **establish demand-forecasting technology**, taking into account weather and climate, in order to ensure a stable supply of energy to consumers and the community.

Idea to make Smart Community a feasible operation


- Consumers: maintain quality of life through a combination of people's behaviour and Auto DR in response to CO2 reduction and DR requests
- Suppliers: aim to establish aggregation as a business, with increase scale and enhanced beneficial services as the principal.

By doing so, make it a feasible operation in order to reach this project's goal of developing an "eco culture"

Moving towards application of Smart Community (example case)

Verifiable examples of applications of Smart Community are already appearing, building on Keihanna's projects.

■ Verification content of Takanohara Smart Community FS (Verification Office: Mitsubishi Heavy Industries, Kansai Electric)

Main study points

- Centrally accumulate and aggregate at the Platform any information closely related to lifestyles which revolve around energy, and by taking into consideration regular consumers' needs, provide the information to generate <u>further benefits for customers</u>.
- To work with this, aim to ensure a supply of revenue other than aggregation revenue (eg. promotion/advertising fees) to develop a monetary flow system.

Local governments, etc.

Create an environment which is easy for service-providing operators to enter and for users to easily make use of the services

- ◆Foster regional eco awareness, etc ◆Coordination between researchers and local governments.
 - ◆ Support operators' activities through subsidies and loosening of restrictions

Keihanna Open Innovation Center @KYOTO (KICK)

Developing an international hub for open innovation

Research into creating next generation lifestyles

Kansai Region and Keihanna Science City's potential ② Combine technology,

1) Make the most of the

research, and industry to create new values

③ Foster technology and cultural innovation

Increased sharing of medical data banks to extend range of preventative treatment

Open lab for exchange among researchers from across the world

Life fields

Energy and ICT fields

Realisation of Next-Generation Smart City

Culture and education fields

Agriculture fields

High-performance fuel cells and storage batteries

New nanotech materials

Utilise ICT systems base

Develop high-performance vegetables and healthy food products

Next-generation agriculture which takes energy-saving and energy-generation into account

Cultural properties archives

Evacuation centre for cultural properties in times of disaster

Cultural properties restoration centre

KYOTO Smart City EXPO 2015

KYDTD

SMART CITY

EXPO 2015

May 20 [Wed.] - May 22 [Fri.] Admission Free

May 20 [Wed.]

International Symposium

Venue: Kyoto International Conference Center (Kyoto City)

May 21 [Thu.]

Smart City Messe in Keihanna

May 22 [Fri.]

Venue: Keihanna Open Innovation Center @Kyoto (KICK) and other locations (Kansai Science City)

"Keihanna e² Future Square" showroom

- Tour visitors can see, touch, and experience
 - ∼See and experience actual home terminals, Evs and project content

Place: Keihanna Plaza, 1-7 Hikaridai, Seika-cho, Soraku-gun, Kyoto-fu

*Tour visit applications (reservation required): Reception Counter, Kansai Science City Promotion

TEL: 0774-98-2279

http://kri-p.jp/e2miraisquare.pdf

Thank you very much for your attention

Exporting the Keihanna Eco City Model as an environmental city package to the rest of the world!

Developing new Environmental and Energy industries in tech-savvy Japan!

From the birthplace of the Kyoto Protocol to the rest of the world!

KICK

"Do you Kyoto?" is a world-famous phrase meaning "Are you being environmentally-responsible?"